How many points have the same Engel and Sylvester expansions?

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Many Rational Points Does a Random Curve Have?

A large part of modern arithmetic geometry is dedicated to or motivated by the study of rational points on varieties. For an elliptic curve over Q, the set of rational points forms a finitely generated abelian group. The ranks of these groups, when ranging over all elliptic curves, are conjectured to be evenly distributed between rank 0 and rank 1, with higher ranks being negligible. We will de...

متن کامل

How Many Real Attractive Fixed Points Can A Polynomial Have?

We prove a complex polynomial of degree n has at most ⌈n/2⌉ attractive fixed points lying on a line. We also consider the general case.

متن کامل

q–ENGEL SERIES EXPANSIONS AND SLATER’S IDENTITIES

We describe the q–Engel series expansion for Laurent series discovered by John Knopfmacher and use this algorithm to shed new light on partition identities related to two entries from Slater’s list. In our study Al-Salam/Ismail and Santos polynomials play a crucial rôle. Dedicated to the memory of John Knopfmacher 1937–1999

متن کامل

Engel Series and Cohen-Egyptian Fraction Expansions

Recommended by Stéphane Louboutin Two kinds of series representations, referred to as the Engel series and the Cohen-Egyptian fraction expansions, of elements in two different fields, namely, the real number and the discrete-valued non-archimedean fields are constructed. Both representations are shown to be identical in all cases except the case of real rational numbers.

متن کامل

How Many Pairs of Products of Consecutive Integers Have the Same Prime Factors?

e _ 2'/z 2 4 4 6 6 8 1 / 8 2 () (33) 1/4 ( 5577) which is proved as follows . For v > 2, the Pth factor is [2' '. . 2P/(2p'+ 1) . (2 1)]'áz [(2"-'-1)!!z2"!!z/2 .2v-'!!z(2v-1)!!z]'/z where n!!=n(n-2) . . .4.2 if n is even, n(n-2) . . .3 .1 if n is odd. Since 2°!!=2 z " '2° '1 and (2°-1)!!=2°! /2°!!=2°!/2z" '2°'!, this expression becomes [2z"2°-'16/2 .2 zí42'!z]I/z By induction on v, the product ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2003

ISSN: 0022-314X

DOI: 10.1016/s0022-314x(03)00017-9